In concert with the development of novel β-lactams and broad-spectrum cephalosporins, bacterially encoded β-lactamases have evolved to accommodate the new agents. This study was designed to identify, at the sequence level, the genes responsible for the extended-spectrum-β-lactamase (ESBL) phenotypes of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates collected during the global tigecycline phase 3 clinical trials. PCR assays were developed to identify and clone the blaTEM, bla SHV, blaOXA, and blaCTX genes from clinical strains. Isolates were also screened for AmpC genes of the blaCMY, blaACT, blaFOX, and blaDHA families as well as the blaKPC genes encoding class A carbapenemases. E. coli, K. pneumoniae, and P. mirabilis isolates with ceftazidime MICs of ≥2 μg/ml were designated possible ESBL-producing pathogens and were then subjected to a confirmatory test for ESBLs by use of Etest. Of 272 unique patient isolates, 239 were confirmed by PCR and sequencing to carry the genes for at least one ESBL, with 44% of the positive isolates harboring the genes for multiple ESBLs. In agreement with current trends for ESBL distribution, blaCTX-M-type β-lactamase genes were found in 83% and 71% of the ESBL-positive E. coli and K. pneumoniae isolates, respectively, whereas blaSHV genes were found in 41% and 28% of the ESBL-positive K. pneumoniae and E. coli isolates, respectively. Ninety-seven percent of the E. coli and K. pneumoniae isolates were tigecycline susceptible (MIC90 = 2 μg/ml), warranting further studies to define the therapeutic utility of tigecycline against strains producing ESBLs in a clinical setting. Copyright © 2009, American Society for Microbiology. All Rights Reserved.
CITATION STYLE
Jones, C. H., Tuckman, M., Keeney, D., Ruzin, A., & Bradford, P. A. (2009). Characterization and sequence analysis of extended-spectrum-β- lactamase-encoding genes from Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates collected during tigecycline phase 3 clinical trials. Antimicrobial Agents and Chemotherapy, 53(2), 465–475. https://doi.org/10.1128/AAC.00883-08
Mendeley helps you to discover research relevant for your work.