Electron microscopic study of mouse embryonic stem cell-derived cardiomyocytes

7Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Differentiation of embryonic stem cell (ESC)-derived embryoid bodies (EBs) is a heterogeneous process. ESCs can differentiate in vitro into different cell types including beating cardiomyocytes. The main aim of the present study was to develop an improved preparation method for scanning electron microscopic study of ESC-derived cardiac bundles and to investigate the fine structural characteristics of mouse ESCs-derived cardiomyocytes using electron microscopy. The mouse ESCs differentiation was induced by EBs' development through hanging drop, suspension and plating stages. Cardiomyocytes appeared in the EBs' outgrowth as beating clusters that grew in size and formed thick branching bundles gradually. Cardiac bundles showed cross striation even when they were observed under an inverted microscope. They showed a positive immunostaining for cardiac troponin I and α-actinin. Transmission and scanning electron microscopy (TEM & SEM) were used to study the structural characteristics of ESC-derived cardiomyocytes. Three weeks after plating, differentiated EBs showed a superficial layer of compact fibrous ECM that made detailed observation of cardiac bundles impossible. We tried several preparation methods to remove unwanted cells and fibers, and finally we revealed the branching bundles of cardiomyocytes. In TEM study, most cardiomyocytes showed parallel arrays of myofibrils with a mature sarcomeric organization marked by H-bands, M-lines and numerous T-tubules. Cardiomyocytes were connected to each other by intercalated discs composed of numerous gap junctions and fascia adherences. © 2011 Springer Science+Business Media B.V.

Cite

CITATION STYLE

APA

Taha, M. F., Valojerdi, M. R., Hatami, L., & Javeri, A. (2012). Electron microscopic study of mouse embryonic stem cell-derived cardiomyocytes. Cytotechnology, 64(2), 197–202. https://doi.org/10.1007/s10616-011-9411-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free