This study applied the kriging model and particle swarm optimization (PSO) algorithm for the dynamic model updating of bridge structures using the higher vibration modes under large-amplitude initial conditions. After addressing the higher mode identification theory using time-domain operational modal analysis, the kriging model is then established based on Latin hypercube sampling and regression analysis. The kriging model performs as a surrogate model for a complex finite element model in order to predict analytical responses. An objective function is established to express the relative difference between analytically predicted responses and experimentally measured ones, and the initial finite element (FE) model is hereinafter updated using the PSO algorithm. The Jalón viaduct—a concrete continuous railway bridge—is applied to verify the proposed approach. The results show that the kriging model can accurately predict the responses and reduce computational time as well.
CITATION STYLE
Qin, S., Zhang, Y., Zhou, Y. L., & Kang, J. (2018). Dynamic model updating for bridge structures using the kriging model and PSO algorithm ensemble with higher vibration modes. Sensors (Switzerland), 18(6). https://doi.org/10.3390/s18061879
Mendeley helps you to discover research relevant for your work.