Detecting Outliers in SDSS using Convolutional Neural Network

2Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

We propose an automated algorithm based on Convolutional Neural Network (CNN) for the detection of peculiar objects in large databases using their spectral observations. A convolutional neural network is a class of deep-learning algorithms which allows the detection of significant features/patterns in sequential data like images, audio, time-series etc. by applying convolutional neurons (kernels) along the sequence. For detecting unusual spectra, we use eight-layer deep convolutional network with autoencoder architecture on ∼ 60,000 spectra collected from the Sloan Digital Sky Survey. The training of the network is done in an unsupervised manner. We show that the trained network is able to retrieve the spectra of rare objects from a large collection of spectra. Such algorithms can easily be rescaled to other surveys and therefore can serve as a potential component of the data reduction pipelines for automatically detecting spectra with unusual features and recovering defective spectra.

Cite

CITATION STYLE

APA

Sharma, K., Kembhavi, A., Kembhavi, A., Sivarani, T., & Abraham, S. (2019). Detecting Outliers in SDSS using Convolutional Neural Network. Bulletin de La Societe Royale Des Sciences de Liege, 88, 174–181. https://doi.org/10.25518/0037-9565.8811

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free