It was found that pyruvate kinases with two different regulatory characteristics were distributed among oral streptococci. The pyruvate kinases of Streptococcus mutans, Streptococcus salivarius, and Streptococcus bovis were activated by glucose 6-phosphate, whereas the enzymes of both Streptococcus sanguis and Streptococcus mitis were activated by fructose 1,6-bisphosphate. Pyruvate kinase (EC 2.7.1.40) from S. sanguis NCTC 10904 was purified, giving a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme had a molecular weight of 250,000 to 260,000 and consisted of four identical subunits. Whereas the pyruvate kinase from S. mutans was completely dependent on glucose 6-phosphate (K. Abbe and T. Yamada, J. Bacteriol. 149:299-305, 1982), the enzyme from S. sanguis was activated by fructose 1,6-bisphosphate. In the presence of 0.5 mM fructose 1,6-bisphosphate, the saturation curves for the substrates, phosphoenolpyruvate and ADP, were hyperbolic, and the K(m) values were 0.13 and 0.30 mM, respectively. Without fructose 1,6-bisphosphate, however, saturation curves for both substrates were sigmoidal. GDP, IDP, and UDP could replace ADP. Like the enzyme from S. mutans, the enzyme from S. sanguis required a divalent cation, Mg2+ or Mn2+, and a monovalent cation, K+ or NH4+, for activity, and it was strongly inhibited by P(i). When the concentration of P(i) was increased, the half-saturating concentration and Hill coefficient for fructose 1,6-bisphosphate increased. The remarkable fluctuation of intracellular levels of fructose 1,6-bisphosphate and phosphoenolpyruvate observed in the cells growing under glucose limitation and nitrogen limitation implies that the intracellular concentration of fructose 1,6-bisphosphate, in cooperation with that of P(i), may regulate pyruvate kinase activity in S. sanguis in vivo.
CITATION STYLE
Abbe, K., Takahashi, S., & Yamada, T. (1983). Purification and properties of pyruvate kinase from Streptococcus sanguis and activator specificity of pyruvate kinase from oral streptococci. Infection and Immunity, 39(3), 1007–1014. https://doi.org/10.1128/iai.39.3.1007-1014.1983
Mendeley helps you to discover research relevant for your work.