Background: Cancer stem cells (CSCs) are thought to be a source of tumor recurrence due to their stem cell-like properties. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has an important role in tumorigenesis. Cluster of differentiation (CD) 133+ and spheroid formation have been reported to be one of the main features of ovarian CSCs. Therefore, we determined the miRNA expression profile of a CD133 + spheroid-forming subpopulation of the OVCAR3 human ovarian cancer cell line. Methods. Initially, we confirmed the enrichment of the OVCAR3 CD133 subpopulation by evaluating in vitro anchorage-independent growth. After obtaining a subpopulation of CD133+ OVCAR3 cells with>98% purity via cell sorting, miRNA microarray and real-time reverse transcription- polymerase chain reaction (RT-PCR) were performed to evaluate its miRNA profile. Results: We found 37 differentially expressed miRNAs in the CD133+ spheroid-forming subpopulation of OVCAR3 cells, 34 of which were significantly up-regulated, including miR-205, miR-146a, miR-200a, miR-200b, and miR-3, and 3 of which were significantly down-regulated, including miR-1202 and miR-1181. Conclusions: Our results indicate that dysregulation of miRNA may play a role in the stem cell-like properties of ovarian CSCs. © 2012 Nam et al.; licensee BioMed Central Ltd; licensee BioMed Central Ltd.
CITATION STYLE
Nam, E. J., Lee, M., Yim, G. W., Kim, J. H., Kim, S., Kim, S. W., & Kim, Y. T. (2012). MicroRNA profiling of a CD133+ spheroid-forming subpopulation of the OVCAR3 human ovarian cancer cell line. BMC Medical Genomics, 5. https://doi.org/10.1186/1755-8794-5-18
Mendeley helps you to discover research relevant for your work.