Estimation of the Energy Consumption of an All-Terrain Mobile Manipulator for Operations in Steep Vineyards

5Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

A heterogeneous robotic system that can perform various tasks in the steep vineyards of the Mediterranean region was developed and tested as part of the HEKTOR—Heterogeneous Autonomous Robotic System in Viticulture and Mariculture—project. This article describes the design of hardware and an easy-to-use method for evaluating the energy consumption of the system, as well as, indirectly, its deployment readiness level. The heterogeneous robotic system itself consisted of a flying robot—a light autonomous aerial robot (LAAR)—and a ground robot—an all-terrain mobile manipulator (ATMM), composed of an all-terrain mobile robot (ATMR) platform and a seven-degree-of-freedom (DoF) torque-controlled robotic arm. A formal approach to describe the topology and parameters of selected vineyards is presented. It is shown how Google Earth data can be used to make an initial estimation of energy consumption for a selected vineyard. On this basis, estimates of energy consumption were made for the tasks of protective spraying and bud rubbing. The experiments were conducted in two different vineyards, one with a moderate slope and the other with a much steeper slope, to evaluate the proposed estimation method.

Cite

CITATION STYLE

APA

Hrabar, I., Vasiljević, G., & Kovačić, Z. (2022). Estimation of the Energy Consumption of an All-Terrain Mobile Manipulator for Operations in Steep Vineyards. Electronics (Switzerland), 11(2). https://doi.org/10.3390/electronics11020217

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free