A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses

N/ACitations
Citations of this article
133Readers
Mendeley users who have this article in their library.

Abstract

A conceptual model has been developed to create high-resolution precipitation analyses over land by merging gauge-based analysis and CMORPH satellite estimates using data over China for a 5 month period from April to September 2007. A two-step strategy is adopted to remove the bias inherent in the CMORPH satellite precipitation estimates and to combine the bias-corrected satellite estimates with the gauge analysis. First, bias correction is performed for the CMORPH estimates by matching the probability density function (PDF) of the satellite data with that of the gauge analysis using colocated data pairs over a spatial domain of 5lat/lon centering at the target grid box and over a time period of 30 days, ending at the target date. The spatial domain is expanded wherever necessary over gauge-sparse regions to ensure the collection of a sufficient number of gauge-satellite data pairs. The bias-corrected CMORPH precipitation estimates are then combined with the gauge analysis through the optimal interpolation (OI) technique, in which the bias-corrected CMORPH is used as the first guess while the gauge data are used as the observations to modify the first guess over regions with station coverage. Error statistics are computed for the input gauge and satellite data to maximize the performance of the high-resolution merged analysis of daily precipitation. Cross-validation tests and comparisons against independent gauge observations demonstrate feasibility and effectiveness of the conceptual algorithm in constructing merged precipitation analysis with substantially removed bias and significantly improved pattern agreements compared with those of the input gauge and satellite data.

Cite

CITATION STYLE

APA

Xie, P., & Xiong, A. Y. (2011). A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. Journal of Geophysical Research Atmospheres, 116(21). https://doi.org/10.1029/2011JD016118

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free