Super Resolution pada Citra Udara menggunakan Convolutional Neural Network

  • ABDULFATTAH M
  • NOVAMIZANTI L
  • RIZAL S
N/ACitations
Citations of this article
82Readers
Mendeley users who have this article in their library.

Abstract

ABSTRAKBencana di Indonesia didominasi oleh bencana hidrometeorologi yang mengakibatkan kerusakan dalam skala besar. Melalui pemetaan, penanganan yang menyeluruh dapat dilakukan guna membantu analisa dan penindakan selanjutnya. Unmanned Aerial Vehicle (UAV) dapat digunakan sebagai alat bantu pemetaan dari udara. Namun, karena faktor kamera maupun perangkat pengolah citra yang tidak memenuhi spesifikasi, hasilnya menjadi kurang informatif. Penelitian ini mengusulkan Super Resolution pada citra udara berbasis Convolutional Neural Network (CNN) dengan model DCSCN. Model terdiri atas Feature Extraction Network untuk mengekstraksi ciri citra, dan Reconstruction Network untuk merekonstruksi citra. Performa DCSCN dibandingkan dengan Super Resolution CNN (SRCNN). Eksperimen dilakukan pada dataset Set5 dengan nilai scale factor 2, 3 dan 4. Secara berurutan SRCNN menghasilkan nilai PSNR dan SSIM sebesar 36.66 dB / 0.9542, 32.75 dB / 0.9090 dan 30.49 dB / 0.8628. Performa DCSCN meningkat menjadi 37.614dB / 0.9588, 33.86 dB / 0.9225 dan 31.48 dB / 0.8851.Kata kunci: citra udara, deep learning, super resolution ABSTRACTDisasters in Indonesia are dominated by hydrometeorological disasters, which cause large-scale damage. Through mapping, comprehensive handling can be done to help the analysis and subsequent action. Unmanned Aerial Vehicle (UAV) can be used as an aerial mapping tool. However, due to the camera and image processing devices that do not meet specifications, the results are less informative. This research proposes Super Resolution on aerial imagery based on Convolutional Neural Network (CNN) with the DCSCN model. The model consists of Feature Extraction Network for extracting image features and Reconstruction Network for reconstructing images. DCSCN's performance is compared to CNN Super Resolution (SRCNN). Experiments were carried out on the Set5 dataset with scale factor values 2, 3, and 4. The SRCNN sequentially produced PSNR and SSIM values of 36.66dB / 0.9542, 32.75dB / 0.9090 and 30.49dB / 0.8628. DCSCN's performance increased to 37,614dB / 0.9588, 33.86dB / 0.9225 and 31.48dB / 0.8851.Keywords: aerial imagery, deep learning, super resolution

Cite

CITATION STYLE

APA

ABDULFATTAH, M. E., NOVAMIZANTI, L., & RIZAL, S. (2021). Super Resolution pada Citra Udara menggunakan Convolutional Neural Network. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 9(1), 71. https://doi.org/10.26760/elkomika.v9i1.71

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free