The GhsrQ343X allele favors the storage of fat by acting on nutrient partitioning

0Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The growth hormone secretagogue receptor (GHSR) mediates key properties of the gut hormone ghrelin on metabolism and behavior. Nevertheless, most recent observations also support that the GHSR is a constitutively active G protein-coupled receptor (GPCR) endowed with a sophisticated tuning involving a balance of endogenous ligands. Demonstrating the feasibility of shifting GHSR canonical signaling in vivo, we previously reported that a model with enhanced sensitivity to ghrelin (GhsrQ343X mutant rats) developed fat accumulation and glucose intolerance. Herein, we investigated the contribution of energy homeostasis to the onset of this phenotype, as well as behavioral responses to feeding or pharmacological challenges, by comparing GhsrM/M rats to WT littermate rats: (1) as freely behaving animals and (2) in feeding and locomotor paradigms. Herein, GhsrM/M rats showed enhanced locomotor response to a GHSR agonist while locomotor or anorexigenic responses to amphetamine or cabergoline (dopamine receptor 2 agonist), respectively, were preserved. Ad libitum fed GhsrM/M rats consumed and conditioned for sucrose similarly to littermate control rats . In calorie-restricted conditions, GhsrM/M rats retained food anticipatory activity and maintained better body weight and glycemia. Importantly, prior to fat accumulation, male GhsrM/M rats preferentially used carbohydrates as fuel substrate without alterations of energy intake, energy expenditure or physical activity and showed alterations of the GHSR system (i.e. enhanced ratio of GHSR hormones LEAP2: acyl-ghrelin and increased Ghsr expression in the hypothalamus). Overall, the present study provides proof for the concept that shifted GHSR signaling can specifically alter nutrient partitioning resulting in modified balance of carbohydrate/lipid utilization.

Cite

CITATION STYLE

APA

Marion, C., Zizzari, P., Denis, R. G. P., Hassouna, R., Chebani, Y., Leste-Lasserre, T., … Pantel, J. (2021). The GhsrQ343X allele favors the storage of fat by acting on nutrient partitioning. Journal of Endocrinology, 251(3), 181–194. https://doi.org/10.1530/JOE-20-0576

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free