Defensins are naturally occurring antimicrobial peptides secreted in the human body. Mammalian defensins are small, cysteine-rich, cationic peptides, generally consisting of 18–45 amino acids. The antimicrobial activity of defensins arises from their unique amino acid sequence, showing activity against both Gram-positive and Gram-negative bacteria, fungi and enveloped viruses. The use of antimicrobial peptides is rising due to their potential to control biofilm formation and kill microorganisms that are highly tolerant to antibiotics. In free-form, defensins are capable of destroying such microorganisms through numerous mechanisms mainly the carpet, the toroidal and the Barrel-Stave models. However, immobilization of antimicrobial peptides (AMPs) on surfaces with the help of coupling agents and spacers can improve the AMPs’ lifespan and stability in the physiological environment leading to applications for medical devices and implants. Fundamental understanding of both free-form and surface-immobilized defensins is important to design more effective antimicrobial peptides and improve their performance in future developments.
CITATION STYLE
Bruggeman, M., Ijakipour, H., & Stamboulis, A. (2019). Defensin-Like Peptides and Their Antimicrobial Activity in Free-Form and Immobilized on Material Surfaces. In Peptide Synthesis. IntechOpen. https://doi.org/10.5772/intechopen.85508
Mendeley helps you to discover research relevant for your work.