A method of paste backfill recovery for residual room coal pillars is hereby proposed. The principles and processes of this method are systemically explained to address issues such as mining-induced earthquakes from spontaneous destabilization, surface subsidence, and low recovery rates. These are caused by the instability of residual coal pillars due to their spontaneous combustion in room-and-pillar mining in medium-to-small coalmines in the northern Shaanxi area. This method is based on the local abundance of surface aeolian sand and solid wastes to be used as paste-backfilling materials in coalmines in the northern Shaanxi area. Uniaxial compressive strength, bleeding rate, and slump tests were performed on paste-backfilled samples constituted at different ratios based on the types of materials involved in paste backfilling in the northern Shaanxi region, thereby helping to confirm the optimal ratios for paste-backfilling materials for the Ershike coal mine. A simulation was conducted to investigate the failure, goaf vertical stress distribution, and surface deformation properties of paste-backfilled pillars and coal pillars, where paste backfilling was used with paste-backfilling materials constituted at different compressive strengths. This was to verify the experimental results that would be obtained with paste-backfilling materials constituted at different ratios, and reveal the mechanism by which paste backfilling of residual room pillars can maintain the mine's surrounding rock stability. These study results are of great instructive significance to the safe recovery of residual room pillars in China's western mining areas.
CITATION STYLE
Zhou, N., Yan, H., Jiang, S., Sun, Q., & Ouyang, S. (2019). Stability analysis of surrounding rock in paste backfill recovery of residual room pillars. Sustainability (Switzerland), 11(2). https://doi.org/10.3390/su11020478
Mendeley helps you to discover research relevant for your work.