Background A growing body of evidence supports the role of platelets in cancer metastasis, escape from immune surveillance, and angiogenesis. Mean platelet volume (MPV), which reflects platelet turnover, is reported routinely as part of automated complete blood count. Accumulating evidence suggests that MPV is a useful biomarker in several diseases including cancer. However, its role in cancer patients receiving molecular targeted therapy has not been described in the literature. Materials and methods We retrospectively analysed the prognostic impact of MPV in advanced or recurrent EGFR mutant lung adenocarcinoma treated with EGFR tyrosine kinase inhibitors (EGFR-TKIs). Lymphocyte-to-monocyte ratio (LMR) has been previously reported to be a poor prognostic factor in EGFR mutant non-small cell lung cancer and was also included as a covariate. Results Using the previously described Cutoff Finder algorithm, the cut-off points for MPV and LMR that best predicted progression free survival (PFS) of EGFR-TKI were determined as 10.3 and 2.8, respectively. The median PFS was 14.7 and 8.2 months in MPV low and high groups (p = 0.013, log-rank test). The median PFS was 13.5 and 6.2 months in LMR high and low groups (p < 0.001, log-rank test). MPV and LMR were independently distributed (chi square test) and the multivariate analysis using Cox’s proportional hazards regression model revealed that high MPV, low LMR, and pleural effusion were significant predictors for shorter PFS. Conclusion MPV and LMR, measured as part of routine complete blood count, can be utilized to predict the outcome of EGFR-TKI therapy with no additional costs. Our results suggest a mechanism of EGFR-TKI resistance which is associated with the functional status of the platelets.
CITATION STYLE
Watanabe, K., Yasumoto, A., Amano, Y., Kage, H., Goto, Y., Yatomi, Y., … Nagase, T. (2018). Mean platelet volume and lymphocyte-to-monocyte ratio are associated with shorter progression-free survival in EGFR-mutant lung adenocarcinoma treated by EGFR tyrosine kinase inhibitor. PLoS ONE, 13(9). https://doi.org/10.1371/journal.pone.0203625
Mendeley helps you to discover research relevant for your work.