Numerical Modeling of Mechanical Behavior of Functionally Graded Polylactic Acid–Acrylonitrile Benzidine Styrene Produced via Fused Deposition Modeling: Experimental Observations

4Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Functionally graded materials (FGM) have attracted considerable attention in the field of composite materials and rekindled interest in research on composite materials due to their unique mechanical response achieved through material design and optimization. Compared to conventional composites, FGMs offer several advantages and exceptional properties, including improved deformation resistance, improved toughness, lightness properties, and excellent recoverability. This study focused on the production of functionally graded (FG) polymer materials by the additive manufacturing (AM) method. FG structures were produced by the fused deposition modeling (FDM) method using acrylonitrile benzidine styrene (ABS) and polylactic acid (PLA) materials, and tensile tests were performed according to ASTM D638. The effects of different layer thicknesses, volume ratios, and total thicknesses on mechanical behavior were investigated. The tensile standard of materials produced by additive manufacturing introduces geometric differences. Another motivation in this study is to reveal the differences between the results according to the ASTM standard. In addition, tensile tests were carried out by producing single-layer samples at certain volume ratios to create a numerical model with the finite element method to verify the experimental data. As a result of this study, it is presented that the FG structure produced with FDM improves mechanical behavior.

Cite

CITATION STYLE

APA

Sevim, C., Caliskan, U., Demirbas, M. D., Ekrikaya, S., & Apalak, M. K. (2023). Numerical Modeling of Mechanical Behavior of Functionally Graded Polylactic Acid–Acrylonitrile Benzidine Styrene Produced via Fused Deposition Modeling: Experimental Observations. Materials, 16(14). https://doi.org/10.3390/ma16145177

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free