Thioredoxin is a major component of thiol-reducing system. Recently, we identified thioredoxin-binding protein-2 (TBP-2) as a negative regulator of thioredoxin. Here, we report the role of TBP-2 in oxidative renal tubular injury and the subsequent carcinogenesis by ferric nitrilotriacetate. TBP-2 was abundantly expressed in the rat kidney. Immunohistochemical analysis revealed that TBP-2 was present in association with nuclei and mitochondrial intermembrane space in the proximal tubular cells and coimmunoprecipitated with cytochrome c. After acute oxidative tubular damage, TBP-2 protein, but not messenger RNA, markedly decreased, demonstrating shortened half-life of this protein. Most cases of the induced renal cell carcinoma showed undetectable levels of TBP-2 protein, which was associated with the methylation of CpG island in the promoter region. Genome sequence analyses identified the poly-A tract in the 3′ untranslated region as a mutation hot spot in this rather nonselective environment. Collectively, the amounts of TBP-2 protein were inversely associated with proliferation of tubular cells, as evaluated by proliferating cell nuclear antigen. These results suggest that loss of TBP-2 is essential for proliferation of not only neoplastic but also non-neoplastic renal tubular cells, and that TBP-2 is a target gene in oxidative stress-induced renal carcinogenesis by ferric nitrilotriacetate. © 2005 USCAP, Inc All rights reserved.
CITATION STYLE
Dutta, K. K., Nishinaka, Y., Masutani, H., Akatsuka, S., Aung, T. T., Shirase, T., … Toyokuni, S. (2005). Two distinct mechanisms for loss of thioredoxin-binding protein-2 in oxidative stress-induced renal carcinogenesis. Laboratory Investigation, 85(6), 798–807. https://doi.org/10.1038/labinvest.3700280
Mendeley helps you to discover research relevant for your work.