Objectives: To assess whether volumetric cerebrospinal fluid (CSF) MRI can be used as a surrogate for brain atrophy assessment and to evaluate how the T2 of the CSF relates to brain atrophy. Methods: Twenty-eight subjects [mean age 64 (sd 2) years] were included; T1-weighted and CSF MRI were performed. The first echo data of the CSF MRI sequence was used to obtain intracranial volume, CSF partial volume was measured voxel-wise to obtain CSF volume (VCSF) and the T2 of CSF (T2,CSF) was calculated. The correlation between VCSF / T2,CSF and brain atrophy scores [global cortical atrophy (GCA) and medial temporal lobe atrophy (MTA)] was evaluated. Results: Relative total, peripheral subarachnoidal, and ventricular VCSF increased significantly with increased scores on the GCA and MTA (R = 0.83, 0.78 and 0.78 and R = 0.72, 0.62 and 0.86). Total, peripheral subarachnoidal, and ventricular T2 of the CSF increased significantly with higher scores on the GCA and MTA (R = 0.72, 0.70 and 0.49 and R = 0.60, 0.57 and 0.41). Conclusion: A fast, fully automated CSF MRI volumetric sequence is an alternative for qualitative atrophy scales. The T2 of the CSF is related to brain atrophy and could thus be a marker of neurodegenerative disease. Key points: • A 1:11 min CSF MRI volumetric sequence can evaluate brain atrophy. • CSF MRI provides accurate atrophy assessment without partial volume effects. • CSF MRI data can be processed quickly without user interaction. • The measured T2of the CSF is related to brain atrophy.
CITATION STYLE
De Vis, J. B., Zwanenburg, J. J., van der Kleij, L. A., Spijkerman, J. M., Biessels, G. J., Hendrikse, J., & Petersen, E. T. (2016). Cerebrospinal fluid volumetric MRI mapping as a simple measurement for evaluating brain atrophy. European Radiology, 26(5), 1254–1262. https://doi.org/10.1007/s00330-015-3932-8
Mendeley helps you to discover research relevant for your work.