Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence

12Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We describe two-step fluorescence microscopy, a new approach to non-linear imaging based on positive reversible photoswitchable fluorescent probes. The protein Padron approximates ideal two-step fluorescent behaviour: it equilibrates to an inactive state, converts to an active state under blue light, and blue light also excites this active state to fluoresce. Both activation and excitation are linear processes, but the total fluorescent signal is quadratic, proportional to the square of the illumination dose. Here, we use Padron's quadratic non-linearity to demonstrate the principle of two-step microscopy, similar in principle to two-photon microscopy but with orders-of-magnitude better cross-section. As with two-photon, quadratic non-linearity from two-step fluorescence improves resolution and reduces unwanted out-of-focus excitation, and is compatible with structured illumination microscopy. We also show two-step and two-photon imaging can be combined to give quartic non-linearity, further improving imaging in challenging samples. With further improvements, two-step fluorophores could replace conventional fluorophores for many imaging applications.

Cite

CITATION STYLE

APA

Ingaramo, M., York, A. G., Andrade, E. J., Rainey, K., & Patterson, G. H. (2015). Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence. Nature Communications, 6. https://doi.org/10.1038/ncomms9184

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free