Recent studies showed that Rai1 and its homologs are a crucial component of the mRNA 5′-end capping quality control mechanism. They can possess RNA 5′-end pyrophosphohydrolase (PPH), decapping, and 5′-3′ exonuclease (toward 5′ monophosphate RNA) activities, which help to degrade mRNAs with incomplete 5′-end capping. A single active site in the enzyme supports these apparently distinct activities. However, each Rai1 protein studied so far has a unique set of activities, and the molecular basis for these differences are not known. Here, we have characterized the highly diverse activity profiles of Rai1 homologs from a collection of fungal organisms and identified a new activity for these enzymes, 5′-end triphosphonucleotide hydrolase (TPH) instead of PPH activity. Crystal structures of two of these enzymes bound to RNA oligonucleotides reveal differences in the RNA binding modes. Structure-based mutations of these enzymes, changing residues that contact the RNA but are poorly conserved, have substantial effects on their activity, providing a framework to begin to understand the molecular basis for the different activity profiles.
CITATION STYLE
Wang, V. Y. F., Jiao, X., Kiledjian, M., & Tong, L. (2015). Structural and biochemical studies of the distinct activity profiles of Rai1 enzymes. Nucleic Acids Research, 43(13), 6596–6606. https://doi.org/10.1093/nar/gkv620
Mendeley helps you to discover research relevant for your work.