Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation

235Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

Abstract

Background - In patients with recurrent persistent atrial fibrillation (AF), vulnerability to AF persists indefinitely despite presumed completion of reverse electrical remodeling within days of return to normal sinus rhythm. Atrial electrical and anatomic remodeling and reverse remodeling were studied in a canine model of chronic AF. Methods and Results - Chronic AF was induced in 8 dogs by creating moderate mitral regurgitation and rapidly pacing the right atrium at 640 bpm for >8 weeks. Measurements performed at baseline, after establishment of chronic AF, and then at 4 hours and again at 7 to 14 days after cardioversion to sinus rhythm included atrial effective refractory periods, AF cycle lengths, left atrial dimensions, premature atrial contraction (PAC) frequency, and atrial vulnerability to atrial extrastimuli. After establishing chronic AF, atrial effective refractory period shortening, increases in spontaneous PAC frequency, increases in left atrial size with loss of contractility, and multiple ultrastructural abnormalities were demonstrated. Complete reverse electrical remodeling and decreases in PACs were observed after 7 to 14 days of sinus rhythm, but there was no resolution of anatomic and ultrastructural abnormalities. Occurrence of spontaneous AF paralleled PAC frequency, but vulnerability to AF induction persisted (75% immediately after conversion versus 63% at 4 hours and 50% at 7 to 14 days) despite reverse electrical remodeling. Conclusions - After conversion from chronic AF to sinus rhythm in this canine model, electrical remodeling occurs rapidly. However, gross and ultrastructural anatomic changes persist, as does vulnerability to induced AF. Vulnerability to AF initiation 7 to 14 days after cardioversion is more dependent on persisting structural abnormalities than on electrophysiological abnormalities.

Cite

CITATION STYLE

APA

Everett IV, T. H., Li, H., Mangrum, J. M., McRury, I. D., Mitchell, M. A., Redick, J. A., & Haines, D. E. (2000). Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation. Circulation, 102(12), 1454–1460. https://doi.org/10.1161/01.CIR.102.12.1454

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free