The increasing demands from micro-power applications call for the development of the electrode materials for Li-ion microbatteries using thin-film technology. Porous Olivine-type LiFePO4 (LFP) and NASICON-type Li3Fe2(PO4)3 have been successfully fabricated by radio frequency (RF) sputtering and post-annealing treatments of LFP thin films. The microstructures of the LFP films were characterized by X-ray diffraction and scanning electron microscopy. The electrochemical performances of the LFP films were evaluated by cyclic voltammetry and galvanostatic charge-discharge measurements. The deposited and annealed thin film electrodes were tested as cathodes for Li-ion microbatteries. It was found that the electrochemical performance of the deposited films depends strongly on the annealing temperature. The films annealed at 500 °C showed an operating voltage of the porous LFP film about 3.45 V vs. Li/Li+ with an areal capacity of 17.9 µAh cm−2 µm−1 at C/5 rate after 100 cycles. Porous NASICON-type Li3Fe2(PO4)3 obtained after annealing at 700 °C delivers the most stable capacity of 22.1 µAh cm−2 µm−1 over 100 cycles at C/5 rate, with an operating voltage of 2.8 V vs. Li/Li+. The post-annealing treatment of sputtered LFP at 700 °C showed a drastic increase in the electrochemical reactivity of the thin film cathodes vs. Li+, leading to areal capacity ~9 times higher than as-deposited film (~27 vs. ~3 µAh cm−2 µm−1) at C/10 rate.
CITATION STYLE
Sugiawati, V. A., Vacandio, F., Perrin-Pellegrino, C., Galeyeva, A., Kurbatov, A. P., & Djenizian, T. (2019). Sputtered Porous Li-Fe-P-O Film Cathodes Prepared by Radio Frequency Sputtering for Li-ion Microbatteries. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47464-2
Mendeley helps you to discover research relevant for your work.