Spin-Polarized Quantum Transport in Mesoscopic Conductors: Computational Concepts and Physical Phenomena

  • Wimmer M
  • Scheid M
  • Richter K
N/ACitations
Citations of this article
20Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Mesoscopic conductors are electronic systems of sizes in between nano- and micrometers, and often of reduced dimensionality. In the phase-coherent regime at low temperatures, the conductance of these devices is governed by quantum interference effects, such as the Aharonov-Bohm effect and conductance fluctuations as prominent examples. While first measurements of quantum charge transport date back to the 1980s, spin phenomena in mesoscopic transport have moved only recently into the focus of attention, as one branch of the field of spintronics. The interplay between quantum coherence with confinement-, disorder- or interaction-effects gives rise to a variety of unexpected spin phenomena in mesoscopic conductors and allows moreover to control and engineer the spin of the charge carriers: spin interference is often the basis for spin-valves, -filters, -switches or -pumps. Their underlying mechanisms may gain relevance on the way to possible future semiconductor-based spin devices. A quantitative theoretical understanding of spin-dependent mesoscopic transport calls for developing efficient and flexible numerical algorithms, including matrix-reordering techniques within Green function approaches, which we will explain, review and employ.

Cite

CITATION STYLE

APA

Wimmer, M., Scheid, M., & Richter, K. (2013). Spin-Polarized Quantum Transport in Mesoscopic Conductors: Computational Concepts and Physical Phenomena. In Encyclopedia of Complexity and Systems Science (pp. 1–30). Springer New York. https://doi.org/10.1007/978-3-642-27737-5_514-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free