Recent evidence suggests that the ovine premammillary hypothalamic area (PMH) is an important target for the pineal hormone, melatonin, and its role in seasonal reproduction. In rodents, the PMH is a complex region consisting of several cell groups with differing neurochemical content and anatomical connections. Therefore, to obtain a better understanding of the potential neural targets for melatonin in this area of the sheep brain, we have undertaken a detailed anatomical characterization of the PMH, including its nuclear divisions and the location of neuropeptide/neurotransmitter cells within them. By combining immunocytochemistry for NeuN, a neuronal marker, with Nissl staining in anestrous, ovariectomized, estradiol-treated ewes, we identified three nuclei within the PMH: a caudal continuation of the hypothalamic arcuate nucleus (cARC), the ventral division of the premammillary nucleus (PMv), and the ventral tuberomammillary nucleus (TMv). The cARC contained neurons that were immunoreactive for tyrosine hydroxylase, dynorphin, estrogen receptor α, cocaine- and amphetamine-regulated transcript peptide (CART), and nitric oxide synthase (NOS). The PMv was also characterized by the presence of cells that contained NOS and CART, although the size of these cells was larger than that of their corresponding phenotype in the cARC. By contrast, in the TMv, of the markers examined in the present study, only fibers immunoreactive for orexin were seen. Thus, the ovine PMH is a heterogeneous region comprised of three subdivisions, each with distinct morphological and neurochemical characteristics. This anatomical map of the PMH provides a basis for future studies to determine the functional contribution of each component to the influence of melatonin on seasonal reproduction.
CITATION STYLE
Sliwowska, J. H., Billings, H. J., Goodman, R. L., Coolen, L. M., & Lehman, M. N. (2004). The premammillary hypothalamic area of the ewe: Anatomical characterization of a melatonin target area mediating seasonal reproduction. Biology of Reproduction, 70(6), 1768–1775. https://doi.org/10.1095/biolreprod.103.024182
Mendeley helps you to discover research relevant for your work.