Nanostructured magnéli-phase w18o49 thin films for photoelectrochemical water splitting

21Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

Converting water into hydrogen through the photo-electrochemical (PEC) process is one of the most exciting approaches in this field, and there is a quest to design or search for new electro-photo-catalytic materials. In this work, simple steps for fabrication and transformation of metallic tungsten thin film into the photo-active Magnéli-phase (W18O49) of tungsten oxide thin film is demonstrated. The post-annealing temperature has a significant impact on the phase evolution of tungsten film into W18O49. The film thickness of W18O49 is controlled by controlling the sputtering time (or deposition time) of W film. The PEC performance of the as-prepared electrodes is evaluated by monitoring the water oxidation reaction under visible radiation. The PEC findings reveal a correlation between PEC performance and phase, morphology, and thickness of the film. The as-derived W18O49 can efficiently catalyze the water oxidation reaction at neutral solution pH, generating 0.6 and 1.4 mA cm−1 photo-current at 0.6 and 0.8 V vs. Saturated calomel electrode (SCE), respectively, in addition to excellent stability. The electrical conductivity and the charge transfer kinetics are investigated employing the electrochemical impedance spectroscopic (EIS) technique.

Cite

CITATION STYLE

APA

Mohamedkhair, A. K., Drmosh, Q. A., Qamar, M., & Yamani, Z. H. (2020). Nanostructured magnéli-phase w18o49 thin films for photoelectrochemical water splitting. Catalysts, 10(5). https://doi.org/10.3390/catal10050526

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free