New ant colony optimization algorithm for the traveling salesman problem

42Citations
Citations of this article
100Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

As one suitable optimization method implementing computational intelligence, ant colony optimization (ACO) can be used to solve the traveling salesman problem (TSP). However, traditional ACO has many shortcomings, including slow convergence and low efficiency. By enlarging the ants’ search space and diversifying the potential solutions, a new ACO algorithm is proposed. In this new algorithm, to diversify the solution space, a strategy of combining pairs of searching ants is used. Additionally, to reduce the influence of having a limited number of meeting ants, a threshold constant is introduced. Based on applying the algorithm to 20 typical TSPs, the performance of the new algorithm is verified to be good. Moreover, by comparison with 16 state-of-the-art algorithms, the results show that the proposed new algorithm is a highly suitable method to solve the TSP, and its performance is better than those of most algorithms. Finally, by solving eight TSPs, the good performance of the new algorithm has been analyzed more comprehensively by comparison with that of the typical traditional ACO. The results show that the new algorithm can attain a better solution with higher accuracy and less effort.

Cite

CITATION STYLE

APA

Gao, W. (2020). New ant colony optimization algorithm for the traveling salesman problem. International Journal of Computational Intelligence Systems, 13(1), 44–55. https://doi.org/10.2991/ijcis.d.200117.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free