The ciliary beat frequency (CBF) of rat tracheal ciliary cells in a slice preparation was measured using video-enhanced contrast (VEC) microscopy. Acetylcholine (ACh) increased CBF mediated via intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. An adequate hypo-osmotic stress (-40 mosM) potentiated ACh-stimulated CBF increase in tracheal ciliary cells and shifted the ACh dose-response curve to the left (lower concentration side). This potentiation was independent of hypo-osmotic stresses applied ranging from -20 mosM to -90 mosM. A hypo-osmotic stress induces ATP release in many cell types. The present study demonstrated that suramin (an inhibitor of purinergic receptors) and apyrase (an ATPase/ADPase) eliminate the hypo-osmotic potentiation of ACh-stimulated CBF increase and that ATP increased [Ca2+]i and CBF, as well as potentiating ACh-stimulated rises in [Ca2+]i and CBF increase. Moreover, the apical surface of tracheal ciliary cells were stained immunopositive for the P2X4 purinergic receptor. A hypo-osmotic stress (-40 mosM) transiently increased [Ca2+]i and potentiated the ACh-stimulated [Ca2+Ca"]i increase. The hypo-osmotic potentiation of ACh-stimulated CBF increase was not detected under Ca2+-free conditions. These observations suggest that a hypo-osmotic stress stimulates ATP release from the trachea. The released ATP may induce further increases in [Ca2+]i and CBF in ACh-stimulated tracheal ciliary cells, which may be mediated by purinergic receptors, such as P2X4.
CITATION STYLE
Kawakami, M., Nagira, T., Hayashi, T., Shimamoto, C., Kubota, T., Mori, H., … Nakahari, T. (2004). Hypo-osmotic potentiation of acetylcholine-stimulated ciliary beat frequency through ATP release in rat tracheal ciliary cells. Experimental Physiology, 89(6), 739–751. https://doi.org/10.1113/expphysiol.2004.028670
Mendeley helps you to discover research relevant for your work.