Neuronal circuits in the brain are complex and precise. Here, I review aspects of the development of cortical columns in the rodent barrel cortex, focusing on the anatomical and functional data describing the maturation of ascending glutamatergic circuits. Projections from layer 4 to layer 3 develop into cortical columns with little macroscopic refinement. Depriving animals of normal sensory experience induces long-term synaptic depression but does not perturb this pattern of development. Mouse models of mental retardation can help us understand the mechanisms of development of cortical columns. Fmr1 knock-out (ko) mice, a model for Fragile X syndrome, lack Fragile X mental retardation protein (FMRP), a suppressor of translation present in synapses. Because FMRP expression is stimulated by neuronal activity, Fmr1-ko mice provide a model to survey the role of sensory input in brain development. Layer 4 to layer 3 projections are altered in multiple ways in the young mutant mice: connection rate is low and layer 4 cell axons are spatially diffuse. Sensory deprivation rescues the connection rate phenotype. The interaction of FMRP and neuronal activity in the development of cortical circuits is discussed. © 2009 The Authors. Journal compilation © 2009 The Physiological Society.
CITATION STYLE
Bureau, I. (2009). The development of cortical columns: Role of Fragile X mental retardation protein. In Journal of Physiology (Vol. 587, pp. 1897–1901). https://doi.org/10.1113/jphysiol.2008.167155
Mendeley helps you to discover research relevant for your work.