Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue

  • Finsterer J
  • Drory V
N/ACitations
Citations of this article
111Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

BACKGROUND: The physiological background of exercise-induced muscle fatigue(EIMUF) is only poorly understood. Thus, monitoring of EIMUF by a single or multiple biomarkers(BMs) is under debate. After a systematic literature review 91 papers were included.RESULTS: EIMUF is mainly due to depletion of substrates, increased oxidative stress, muscle membrane depolarisation following potassium depletion, muscle hyperthermia, muscle damage, impaired oxygen supply to the muscle, activation of an inflammatory response, or impaired calcium-handling. Dehydration, hyperammonemia, mitochondrial biogenesis, and genetic responses are also discussed. Since EIMUF is dependent on age, sex, degree of fatigue, type, intensity, and duration of exercise, energy supply during exercise, climate, training status (physical fitness), and health status, BMs currently available for monitoring EIMUF have limited reliability. Generally, wet, volatile, and dry BMs are differentiated. Among dry BMs of EIMUF the most promising include power output measures, electrophysiological measures, cardiologic measures, and questionnaires. Among wet BMs of EIMUF those most applicable include markers of ATP-metabolism, of oxidative stress, muscle damage, and inflammation. VO2-kinetics are used as a volatile BM.CONCLUSIONS: Though the physiology of EIMUF remains to be fully elucidated, some promising BMs have been recently introduced, which together with other BMs, could be useful in monitoring EIMUF. The combination of biomarkers seems to be more efficient than a single biomarker to monitor EIMUF. However, it is essential that efficacy, reliability, and applicability of each BM candidate is validated in appropriate studies.

Cite

CITATION STYLE

APA

Finsterer, J., & Drory, V. E. (2016). Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue. BMC Musculoskeletal Disorders, 17(1). https://doi.org/10.1186/s12891-016-0869-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free