Switching the activity of Cas12a using guide RNA strand displacement circuits

90Citations
Citations of this article
129Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The CRISPR effector protein Cas12a has been used for a wide variety of applications such as in vivo gene editing and regulation or in vitro DNA sensing. Here, we add programmability to Cas12a-based DNA processing by combining it with strand displacement-based reaction circuits. We first establish a viable strategy for augmenting Cas12a guide RNAs (gRNAs) at their 5′ end and then use such 5′ extensions to construct strand displacement gRNAs (SD gRNAs) that can be activated by single-stranded RNA trigger molecules. These SD gRNAs are further engineered to exhibit a digital and orthogonal response to different trigger RNA inputs—including full length mRNAs—and to function as multi-input logic gates. We also demonstrate that SD gRNAs can be designed to work inside bacterial cells. Using such in vivo SD gRNAs and a DNase inactive version of Cas12a (dCas12a), we demonstrate logic gated transcriptional control of gene expression in E. coli.

Cite

CITATION STYLE

APA

Oesinghaus, L., & Simmel, F. C. (2019). Switching the activity of Cas12a using guide RNA strand displacement circuits. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09953-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free