Expanding the flexibility of base editing for high-throughput genetic screens in bacteria

3Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Genome-wide screens have become powerful tools for elucidating genotype-to-phenotype relationships in bacteria. Of the varying techniques to achieve knockout and knockdown, CRISPR base editors are emerging as promising options. However, the limited number of available, efficient target sites hampers their use for high-throughput screening. Here, we make multiple advances to enable flexible base editing as part of high-throughput genetic screening in bacteria. We first co-opt the Streptococcus canis Cas9 that exhibits more flexible protospacer-adjacent motif recognition than the traditional Streptococcus pyogenes Cas9. We then expand beyond introducing premature stop codons by mutating start codons. Next, we derive guide design rules by applying machine learning to an essentiality screen conducted in Escherichia coli. Finally, we rescue poorly edited sites by combining base editing with Cas9-induced cleavage of unedited cells, thereby enriching for intended edits. The efficiency of this dual system was validated through a conditional essentiality screen based on growth in minimal media. Overall, expanding the scope of genome-wide knockout screens with base editors could further facilitate the investigation of new gene functions and interactions in bacteria.

References Powered by Scopus

edgeR: A Bioconductor package for differential expression analysis of digital gene expression data

28513Citations
N/AReaders
Get full text

Gene Expression Omnibus: NCBI gene expression and hybridization array data repository

10043Citations
N/AReaders
Get full text

Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection

6112Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Efficient CRISPR-mediated C-to-T base editing in Komagataella phaffii

2Citations
N/AReaders
Get full text

Accelerated Metabolic Engineering for Industrial Strain Development via the Construction of a Large-Scale Genome Library

0Citations
N/AReaders
Get full text

The rise and future of CRISPR-based approaches for high-throughput genomics

0Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Gawlitt, S., Collins, S. P., Yu, Y., Blackman, S. A., Barquist, L., & Beisel, C. L. (2024). Expanding the flexibility of base editing for high-throughput genetic screens in bacteria. Nucleic Acids Research, 52(7), 4079–4097. https://doi.org/10.1093/nar/gkae174

Readers over time

‘24‘250481216

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 5

63%

Researcher 2

25%

Professor / Associate Prof. 1

13%

Readers' Discipline

Tooltip

Biochemistry, Genetics and Molecular Bi... 5

63%

Neuroscience 1

13%

Engineering 1

13%

Agricultural and Biological Sciences 1

13%

Article Metrics

Tooltip
Mentions
News Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free
0