Wearable monitoring devices are in demand in recent times for monitoring daily activities including exercise. Moreover, it is widely utilizing for preventing injuries of athletes during a practice session and in few cases, it leads to muscle fatigue. At present, emerging technology like the internet of things (IoT) and sensors is empowering to monitor and visualize the physical data from any remote location through internet connectivity. In this study, an IoT-enabled wearable device is proposing for monitoring and identifying the muscle fatigue condition using a surface electromyogram (sEMG) sensor. Normally, the EMG signal is utilized to display muscle activity. Arduino controller, Wi-Fi module, and EMG sensor are utilized in developing the wearable device. The Time-frequency domain spectrum technique is employed for classifying the threemuscle fatigue conditions including meanRMS, mean frequency, etc. A real-time experiment is realized on six different individuals with developed wearable devices and the average RMS value assists to determine the average threshold of recorded data. The threshold level is analyzed by calculating the mean RMS value and concluded three fatigue conditions as >2V: Extensive); 1-2V: Moderate, and <1V: Relaxed. The warning alarm system was designed in LabVIEW with three color LEDs to indicate the different states of muscle fatigue. Moreover, the device is interfaced with the cloud through the internet provided with a Wi-Fi module embedded in wearable devices. The data available in the cloud server can be utilized for forecasting the frequency of an individual to muscle fatigue.
CITATION STYLE
Gehlot, A., Singh, R., Siwach, S., Akram, S. V., Alsubhi, K., Singh, A., … Choudhury, S. (2022). Real Time Monitoring of Muscle Fatigue with IoT and Wearable Devices. Computers, Materials and Continua, 72(1), 999–1015. https://doi.org/10.32604/cmc.2022.023861
Mendeley helps you to discover research relevant for your work.