Influence of volume fraction of long-period stacking ordered structure phase on the deformation processes during cyclic deformation of mg-y-zn alloys

14Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Deformation mechanisms in extruded Mg-Y-Zn alloys with different volume fractions of the long-period stacking ordered (LPSO) structure have been investigated during cyclic loading, i.e., compression followed by unloading and reverse tensile loading. Electron backscattered diffraction (EBSD) and in situ neutron diffraction (ND) techniques are used to determine strain path dependence of the deformation mechanisms. The twinning-detwinning mechanism operated in the α-Mg phase is of key importance for the subsequent hardening behavior of alloys with complex microstructures, consisting of α-Mg and LPSO phases. Besides the detailed analysis of the lattice strain development as a function of the applied stress, the dislocation density evolution in particular alloys is determined.

Cite

CITATION STYLE

APA

Drozdenko, D., Farkas, G., Šimko, P., Fekete, K., Čapek, J., Garcés, G., … Máthis, K. (2021). Influence of volume fraction of long-period stacking ordered structure phase on the deformation processes during cyclic deformation of mg-y-zn alloys. Crystals, 11(1), 1–14. https://doi.org/10.3390/cryst11010011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free