Study of the cytotoxic activity of di and triphenyltin(IV) carboxylate complexes

95Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The reaction of 3-methoxyphenylacetic acid (3-MPAH), 4-methoxyphenylacetic acid (4-MPAH), 2,5-dimethyl-3-furoic acid (DMFUH) or 1,4-benzodioxane-6-carboxylic acid (BZDOH) with triphenyltin(IV) chloride (1:1) or diphenyltin(IV) dichloride (2:1) in the presence of triethylamine yielded the compounds [SnPh3(3-MPA)] (1), [SnPh3(4-MPA)] (2), [SnPh3(DMFU)] (3), [SnPh3(BZDO)] (4), [SnPh2(3-MPA)2] (5), [SnPh2(4-MPA)2] (6), [SnPh2(DMFU)2] (7) and [SnPh2(BZDO)2] (8), respectively. The tetranuclear complex [{Me2(DMFU)SnOSn(DMFU)Me2}2] (9) was prepared by the reaction of dimethyltin(IV) oxide and 2,5-dimethyl-3-furoic acid (DMFUH). The molecular structures of 3, 4 and 9, were determined by X-ray diffraction studies. The cytotoxic activity of the carboxylic acids (3-MPAH, 4-MPAH, BZDOH and DMFUH) and di (5-8) and triphenyltin(IV) complexes (2-4) was tested against tumor cell lines human adenocarcinoma HeLa, human myelogenous leukemia K562, human malignant melanoma Fem-x and normal immunocompetent cells, peripheral blood mononuclear cells PBMC. Triphenyltin(IV) complexes show higher activities than the diphenyltin(IV) derivatives. The most active compound is [SnPh3(DMFU)] (3) with IC50 value of 0.15 ± 0.01, 0.051 ± 0.004, 0.074 ± 0.004, 0.20 ± 0.01, 0.15 ± 0.02 on HeLa, K562, Fem-x, rested and stimulated PBMC, respectively, while the most selective are [SnPh2(3-MPA)2] (5), [SnPh2(DMFU)2] (7) and [SnPh2(BZDO)2] (8). Compounds 3, 5, 7 and 8 present higher activities than cisplatin in all the tested cells and relative high selectivity especially on K562 cells. © 2008 Elsevier Inc. All rights reserved.

Cite

CITATION STYLE

APA

Gómez-Ruiz, S., Kaluderović, G. N., Prashar, S., Hey-Hawkins, E., Erić, A., Žižak, Ž., & Juranić, Z. D. (2008). Study of the cytotoxic activity of di and triphenyltin(IV) carboxylate complexes. Journal of Inorganic Biochemistry, 102(12), 2087–2096. https://doi.org/10.1016/j.jinorgbio.2008.07.009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free