Research of a novel 3D printed strain gauge type force sensor

35Citations
Citations of this article
71Readers
Mendeley users who have this article in their library.

Abstract

A 3D printed force sensor with a composite structure developed by combining digital light processing (DLP) based printing and inkjet printing technologies is described in this paper. The sensor has cost effectiveness and time-saving advantages compared to the traditional sensor manufacturing process. During this work, the substrate of the force sensor was printed by a DLP based 3D printer using a transparent high-temperature resin, and the strain gauge of the force sensor was inkjet printed using poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) conductive ink. Finite element (FE) simulation was conducted to find the print origin of the strain gauge. The relationship between the mechanical properties of the post-cured resin and the curing time was investigated and the resistance of the printed strain gauges was characterized to optimize process parameters. Afterward, the force sensor was characterized. Experimental results show that the sensitivity of the sensor is 2.92% N-1 and the linearity error is 3.1485% full scale (FS) within the range from 0 mN-160 mN, and the effective gauge factor of the strain gauge is about 0.98. The resistance drifting is less than 0.004 kω within an hour. These figures prove that the device can perform as a force sensor and 3D printing technology may have great applied potential in sensor fabrication.

Cite

CITATION STYLE

APA

Liu, M., Zhang, Q., Shao, Y., Liu, C., & Zhao, Y. (2019). Research of a novel 3D printed strain gauge type force sensor. Micromachines, 10(1). https://doi.org/10.3390/mi10010020

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free