Simulation-based stability analysis of a thin-walled cylinder during turning with improvements using an adaptronic turning chisel

11Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

The dynamics of the turning process of a thin-walled cylinder in manufacturing is modeled using flexible multibody system theory. The obtained model is time varying due to workpiece rotation and tool feed and retarded, due to repeated cutting of the same surface. Instabilites can occur due to these consecutive cuts that must be avoided in practical application because of the detrimental effects on workpiece, tool and possibly the machine. Neglecting the small feed, the stability of the resulting periodic system with time-delay can be analyzed using the semi-discretization method.The use of an adaptronic tool holder comprising actuators and sensors to improve the dynamic stability is then investigated. Different control concepts, two collocated and two model-based, are implemented in simulation and tuned to increase the domain of stable cutting. Cutting of a moderately thin workpiece exhibits instabilities mainly due to tool vibration. In this case, the stability boundary can be significantly improved. When the instability is due to workpiece vibration, the collocated concepts fail completely. Model based concepts can still obtain some improvements, but are sensitive to modeling errors in the coupling of workpiece and tool.

Cite

CITATION STYLE

APA

Fischer, A., & Eberhard, P. (2011). Simulation-based stability analysis of a thin-walled cylinder during turning with improvements using an adaptronic turning chisel. Archive of Mechanical Engineering, 58(4), 367–391. https://doi.org/10.2478/v10180-011-0023-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free