Comparative structural and functional characterization of sorghum and maize duplications containing orthologous Myb transcription regulators of 3-deoxyflavonoid biosynthesis

36Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sequence characterization of the genomic region of sorghum yellow seed1 shows the presence of two genes that are arranged in a head to tail orientation. The two duplicated gene copies, y1 and y2 are separated by a 9.084 kbp intergenic region, which is largely composed of highly repetitive sequences. The y1 is the functional copy, while the y2 may represent a pseudogene; there are several sequence indels and rearrangements within the putative coding region of y2. The y1 gene encodes a R2R3 type of Myb domain protein that regulates the expression of chalcone synthase, chalcone isomerase and dihydroflavonol reductase genes required for the biosynthesis of 3-deoxyflavonoids. Expression of y1 can be observed throughout the plant and it represents a combination of expression patterns produced by different alleles of the maize p1. Comparative sequence analysis within the coding regions and flanking sequences of y1, y2 and their maize and teosinte orthologs show local rearrangements and insertions that may have created modified regulatory regions. These micro-colinearity modifications possibly are responsible for differential patterns of expression in maize and sorghum floral and vegetative tissues. Phylogenetic analysis indicates that sorghum y1 and y2 sequences may have arisen by gene duplication mechanisms and represent an evolutionarily parallel event to the duplication of maize p2 and p1 genes. © Springer 2006.

Cite

CITATION STYLE

APA

Boddu, J., Jiang, C., Sangar, V., Olson, T., Peterson, T., & Chopra, S. (2006). Comparative structural and functional characterization of sorghum and maize duplications containing orthologous Myb transcription regulators of 3-deoxyflavonoid biosynthesis. Plant Molecular Biology, 60(2), 185–199. https://doi.org/10.1007/s11103-005-3568-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free