Biotechnology for metal recovery from end-of-life printed circuit boards with Aspergillus niger

14Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

The growing production and use of electric and electronic components has led to higher rates of metal consumption and waste generation. To solve this double criticality, the old linear management method (in which a product becomes waste to dispose), has evolved towards a circular approach. Printed circuit boards (PCBs) are the brains of many electronic devices. At the end of their life, this equipment represents a valuable scrap for the content of basemetals such as Cu and Zn (25 and 2 wt %, respectively) and precious metals such as Au, Ag, and Pd (250, 1000, and 110 ppm, respectively). Recently, biotechnological approaches have gained increasing prominence in PCB exploitation since they can be more cost-efficient and environmentally friendly than the chemical techniques. In this context, the present paper describes a sustainable process which uses the fungal strain Aspergillus niger for Cu and Zn extraction from PCBs. The best conditions identified were PCB addition after 14 days, Fe3+ as oxidant agent, and a pulp density of 2.5% (w/v). Extraction efficiencies of 60% and 40% for Cu and Zn, respectively, were achieved after 21 days of fermentation. The ecodesign of the process was further enhanced by using milk whey as substrate for the fungal growth and the consequent citric acid production, which was selected as a bioleaching agent.

Cite

CITATION STYLE

APA

Becci, A., Karaj, D., Merli, G., & Beolchini, F. (2020). Biotechnology for metal recovery from end-of-life printed circuit boards with Aspergillus niger. Sustainability (Switzerland), 12(16). https://doi.org/10.3390/su12166482

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free