Leukocytes utilize urokinase receptors (uPAR; CD87) in adhesion, migration, and matrix proteolysis. uPAR aggregate at cell-substratum interfaces and at leading edges of migrating cells, so this study was undertaken to determine whether uPAR aggregation is capable of initiating activation signaling. Monocyte-like U937 cells were labeled with fluo-3-acetoxymethyl ester to quantitate intracellular Ca2+ concentrations ([Ca2+]i) by spectrofluorometry, and uPAR was aggregated by mAb cross-linking. uPAR aggregation induced highly reproducible increases in [Ca2+]i of 103.0 ± 10.9 nM (p < 0.0001) and >3-fold increases in cellular d-myoinositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Similar increases in [Ca2+]i were also elicited by uPAR aggregation in human monocytes, but cross-linking a control IgG2a had no effect on [Ca2+]i. Selectively cross-linking uPA-occupied uPAR with an anti-uPA mAb produced smaller increases in [Ca2+]i, but fully saturating uPAR with exogenous uPA enhanced the [Ca2+]i response to equal the effect of aggregating uPAR directly. Increased [Ca2+]i was inhibited by thapsigargin, herbimycin A, and U73122, but only partially reduced by low extracellular [Ca2+], indicating that uPAR aggregation increases [Ca2+]i by activating phospholipase C through a tyrosine kinase-dependent mechanism, generating Ins(1,4,5)P3 and releasing Ca2+ from Ins(1,4,5)P3-sensitive intracellular stores. Cross-linking the β2 integrin CR3 could not duplicate the effect of uPAR cross-linking, and uPAR-triggered Ca2+ mobilization was not blocked by anti-CR3 mAbs. These results indicate that uPAR aggregation initiates phosphoinositide hydrolysis by mechanisms that are not strictly dependent on associated uPA or CR3.
CITATION STYLE
Sitrin, R. G., Pan, P. M., Harper, H. A., Blackwood, R. A., & Todd, R. F. (1999). Urokinase Receptor (CD87) Aggregation Triggers Phosphoinositide Hydrolysis and Intracellular Calcium Mobilization in Mononuclear Phagocytes. The Journal of Immunology, 163(11), 6193–6200. https://doi.org/10.4049/jimmunol.163.11.6193
Mendeley helps you to discover research relevant for your work.