The X chromosome has a large effect on hybrid dysfunction, particularly on hybrid male sterility. Although the evidence for this so-called large-X effect is clear, its molecular causes are not yet fully understood. One possibility is that, under certain conditions, evolution proceeds faster in X-linked than in autosomal loci (i.e., faster-X effect) due to both natural selection and their hemizygosity in males, an effect that is expected to be greatest in genes with male-biased expression. Here, I study genome-wide variation in transcript abundance between Drosophila yakuba and D. santomea, within these species and in their hybrid males to evaluate both the faster-X and large-X effects at the level of expression. I find that in X-linked male-biased genes (MBGs) expression evolves faster than in their autosomal counterparts, an effect that is accompanied by a unique reduction in expression polymorphism. This suggests that Darwinian selection is driving expression differences between species, likely enhanced by the hemizygosity of the X chromosome in males. Despite the recent split of the two sister species under study, abundant changes in both cis- and trans-regulatory elements underlie expression divergence in the majority of the genes analyzed, with significant differences in allelic ratios of transcript abundance between the two reciprocal F1 hybrid males. Cis-trans coevolution at molecular level, evolved shortly after populations become isolated, may therefore contribute to explain the breakdown of the regulation of gene expression in hybrid males. Additionally, the X chromosome plays a large role in this hybrid male misexpression, which affects not only MBG but also, to a lesser degree, nonsex-biased genes. Interestingly, hybrid male misexpression is concentrated mostly in autosomal genes, likely facilitated by the rapid evolution of sex-linked trans-acting factors. I suggest that the faster evolution of X-linked MBGs, at both protein and expression levels, contributes to explain the large effect of the X chromosome on hybrid male sterility, likely mediating widespread autosomal misexpression through the preferential recognition of cis-regulatory elements by conspecific trans-acting factors (i.e., cis-trans conspecific recognition). © 2012 The Author 2012.
CITATION STYLE
Llopart, A. (2012). The rapid evolution of X-linked male-biased gene expression and the large-X effect in drosophila yakuba, D. santomea, and their hybrids. In Molecular Biology and Evolution (Vol. 29, pp. 3873–3886). https://doi.org/10.1093/molbev/mss190
Mendeley helps you to discover research relevant for your work.