The ongoing coronavirus disease 2019 (COVID-19) is still rapidly spreading and has caused over 7,000,000 infection cases and 400,000 deaths around the world. To come up with a fast and reliable COVID-19 diagnosis system, people seek help from machine learning area to establish computer-Aided diagnosis systems with the aid of the radiological imaging techniques, like X-ray imaging and computed tomography imaging. Although artificial intelligence based architectures have achieved great improvements in performance, most of the models are still seemed as a black box to researchers. In this paper, we propose an Explainable Attention-based Model (EXAM) for COVID-19 automatic diagnosis with convincing visual interpretation. We transform the diagnosis process with radiological images into an image classification problem differentiating COVID-19, normal and community-Acquired pneumonia (CAP) cases. Combining channel-wise and spatial-wise attention mechanism, the proposed approach can effectively extract key features and suppress irrelevant information. Experiment results and visualization indicate that EXAM outperforms recent state-of-Art models and demonstrate its interpretability.
CITATION STYLE
Shi, W., Tong, L., Zhuang, Y., Zhu, Y., & Wang, M. D. (2020). EXAM: An Explainable Attention-based Model for COVID-19 Automatic Diagnosis. In Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2020. Association for Computing Machinery, Inc. https://doi.org/10.1145/3388440.3412455
Mendeley helps you to discover research relevant for your work.