Layouts of graph subdivisions

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A k-stack layout (respectively, k-queue layout) of a graph consists of a total order of the vertices, and a partition of the edges into k sets of non-crossing (non-nested) edges with respect to the vertex ordering. A k-track layout of a graph consists of a vertex k-colouring, and a total order of each vertex colour class, such that between each pair of colour classes no two edges cross. The stack-number (respectively, queue-number, track-number) of a graph G, denoted by sn(G) (qn(G), tn(G)), is the minimum k such that G has a k-stack (k-queue, k-track) layout. This paper studies stack, queue, and track layouts of graph sub-divisions. It is known that every graph has a 3-stack subdivision. The best known upper bound on the number of division vertices per edge in a 3-stack subdivision of an n-vertex graph G is improved from OScript(log n) to OScript(log min{sn(G),qn(G)}). This result reduces the question of whether queue-number is bounded by stack-number to whether 3-stack graphs have bounded queue number. It is proved that every graph has a 2-queue subdivision, a 4-track subdivision, and a mixed 1-stack 1-queue subdivision. All these values are optimal for every non-planar graph. In addition, we characterise those graphs with k-stack, k-queue, and k-track subdivisions, for all values of k. The number of division vertices per edge in the case of 2-queue and 4-track subdivisions, namely OScript(log qn(G)), is optimal to within a constant factor, for every graph G. Applications to 3D polyline grid drawings are presented. For example, it is proved that every graph G has a 3D polyline grid drawing with the vertices on a rectangular prism, and with OScript(log qn(G)) bends per edge. © Springer-Verlag Berlin Heidelberg 2004.

Cite

CITATION STYLE

APA

Dujmović, V., & Wood, D. R. (2004). Layouts of graph subdivisions. In Lecture Notes in Computer Science (Vol. 3383, pp. 133–143). https://doi.org/10.1007/978-3-540-31843-9_15

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free