In the past few years, machine learning (ML) techniques have been extensively applied to provide efficient solutions to complex wireless network problems. As such, Convolutional Neural Network (CNN) and Q-learning based ML techniques are most popular to achieve harmonized coexistence of Wi-Fi with other co-located technologies such as LTE. In the existing coexistence schemes, a co-located technology selects its transmission time based on the level of Wi-Fi traffic generated in its collision domain which is determined by either sniffing the Wi-Fi packets or using a central coordinator that can communicate with the co-located networks to exchange their status and requirements through a collaboration protocol. However, such approaches for sensing traffic status increase cost, complexity, traffic overhead, and reaction time of the coexistence schemes. As a solution to this problem, this work applies a ML-based approach that is capable to determine the saturation status of a Wi-Fi network based on real-time and over-the-air collection of medium occupation statistics about the Wi-Fi frames without the need for decoding. In particular, inter-frame spacing statistics of Wi-Fi frames are used to develop a CNN model that can determine Wi-Fi network saturation. The results demonstrate that the proposed ML-based approach can accurately classify whether a Wi-Fi network is saturated or not.
CITATION STYLE
Girmay, M., Shahid, A., Maglogiannis, V., Naudts, D., & Moerman, I. (2021). Machine Learning Enabled Wi-Fi Saturation Sensing for Fair Coexistence in Unlicensed Spectrum. IEEE Access, 9, 42959–42974. https://doi.org/10.1109/ACCESS.2021.3066052
Mendeley helps you to discover research relevant for your work.