Purpose: To report antibiotic resistance rates and trends of common ocular isolates collected over a 15-year period. Methods: We collected 3533 isolates from July 1, 2005 to July 31, 2020. Antibiotic sensitivity was determined according to the guidelines of the Clinical and Laboratory Standards Institute. Chi-squared (χ2) test was used to analyze changes in antibiotic susceptibility over 15 years. Results: Among the 3533 isolates, the predominant pathogens were the staphylococcal species. Methicillin resistance was observed in 381 Staphylococcus aureus (S. aureus) isolates (46.4%) and 1888 coagulase-negative staphylococci (CoNS) isolates (61.1%), and methicillin-resistant (MR) isolates had a high probability of concurrent resistance to fluor-oquinolones and aminoglycosides. The mean percentage of resistance in staphylococcal isolates did not reach statistical significance across patient age groups (P = 0.87). Methicillin resistance did not increase in the CoNS (P = 0.546) isolates, and resistance to methicillin slightly decreased among S. aureus (P = 0.04) isolates over 15 years. Additional exploratory analysis revealed a small decrease in resistance to tobramycin (P = 0.01) and chloramphenicol (P < 0.001) among the CoNS isolates. All staphylococcal isolates were susceptible to vancomycin. Conclusion: Staphylococci were the most common microorganisms responsible for causing ocular infections. Antibiotic resistance was high among staphylococci, with nearly half of these isolates were resistant to methicillin and these had a high probability of concurrent resistance among MR staphylococci to other antibiotics. Overall, ocular resistance did not significantly change during the 15-year study period. We conclude that continued surveillance of antibiotic resistance provides critical data to guide antibiotic selection.
CITATION STYLE
Liu, C., Ding, B., Ji, J., Wang, Z., Chen, H., & Cao, W. (2021). Microbial spectrum and resistance patterns in ocular infections: A 15-year review in East China. Infection and Drug Resistance, 14, 2165–2171. https://doi.org/10.2147/IDR.S314647
Mendeley helps you to discover research relevant for your work.