Binding of calcium ions (Ca2+) to proteins can have profound effects on their structure and function. Common roles of calcium binding include structure stabilization and regulation of activity. It is known that diverse families - EF-hands being one of at least twelve - use a Dx[DN]xDG linear motif to bind calcium in near-identical fashion. Here, four novel structural contexts for the motif are described. Existing experimental data for one of them, a thermophilic archaeal subtilisin, demonstrate for the first time a role for Dx[DN]xDG-bound calcium in protein folding. An integrin-like embedding of the motif in the blade of a β-propeller fold - here named the calcium blade - is discovered in structures of bacterial and fungal proteins. Furthermore, sensitive database searches suggest a common origin for the calcium blade in β-propeller structures of different sizes and a pan-kingdom distribution of these proteins. Factors favouring the multiple convergent evolution of the motif appear to include its general Asp-richness, the regular spacing of the Asp residues and the fact that change of Asp into Gly and vice versa can occur though a single nucleotide change. Among the known structural contexts for the Dx[DN]xDG motif, only the calcium blade and the EF-hand are currently found intracellularly in large numbers, perhaps because the higher extracellular concentration of Ca2+ allows for easier fixing of newly evolved motifs that have acquired useful functions. The analysis presented here will inform ongoing efforts toward prediction of similar calcium-binding motifs from sequence information alone.
CITATION STYLE
Rigden, D. J., Woodhead, D. D., Wong, P. W. H., & Galperin, M. Y. (2011). New structural and functional contexts of the Dx[DN]xDG linear motif: Insights into evolution of Calcium-binding proteins. PLoS ONE, 6(6). https://doi.org/10.1371/journal.pone.0021507
Mendeley helps you to discover research relevant for your work.