Graph Representation Learning for Gate Arrival Time Prediction

10Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

An accurate estimate of the timing profile at different stages of the physical design flow allows for pre-emptive changes to the circuit, significantly reducing the design time and effort. In this work, a graph based deep regression model is utilized to predict the gate level arrival time of the timing paths of a circuit. Three scenarios for post routing prediction are considered: prediction after completing floorplanning, prediction after completing placement, and prediction after completing clock tree synthesis (CTS). A commercial static timing analysis (STA) tool is utilized to determine the mean absolute percentage error (MAPE) and the mean absolute error (MAE) for each scenario. Results obtained across all models trained on the complete dataset indicate that the proposed methodology outperforms the baseline errors produced by the commercial physical design tools with an average improvement of 61.58 in the MAPE score when predicting the post-routing arrival time after completing floorplanning and 13.53 improvement when predicting the post-routing arrival time after completing placement. Additional prediction scenarios are analyzed, where the complete dataset is further sub-divided based on the size of the circuits, which leads to an average improvement of 34.83 in the MAPE score as compared to the commercial tool for post-floorplanning prediction of the post-routing arrival time and 22.71 improvement for post-placement prediction of the post-routing arrival time.

References Powered by Scopus

This article is free to access.

Wide & deep learning for recommender systems

2458Citations
1536Readers
80Citations
39Readers
Get full text

Cited by Powered by Scopus

4Citations
4Readers
Get full text
4Citations
2Readers
Get full text

EDA-schema: A Graph Datamodel Schema and Open Dataset for Digital Design Automation

3Citations
2Readers
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Shrestha, P., Phatharodom, S., & Savidis, I. (2022). Graph Representation Learning for Gate Arrival Time Prediction. In MLCAD 2022 - Proceedings of the 2022 ACM/IEEE Workshop on Machine Learning for CAD (pp. 127–133). Association for Computing Machinery, Inc. https://doi.org/10.1145/3551901.3556478

Readers over time

‘22‘2301234

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 3

75%

Researcher 1

25%

Readers' Discipline

Tooltip

Computer Science 2

50%

Physics and Astronomy 1

25%

Engineering 1

25%

Save time finding and organizing research with Mendeley

Sign up for free
0