Nanocrystal-Enabled Perovskite Heterojunctions in Photovoltaic Applications and Beyond

8Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Heterojunctions are used to tailor the properties of semiconductors in optoelectronic devices, yet for emerging devices composed of metal halide perovskites, fabricating perovskite/perovskite heterojunctions has proved challenging due to solvent incompatibilities and rapid homogenization due to ion migration. Recent studies have demonstrated various strategies for using perovskite nanocrystals as a component to fabricate perovskite/perovskite heterojunctions, either with a perovskite thin film or a second nanocrystal layer. Heterojunctions such as these can impart many advantages of both bulk and nanocrystalline perovskite morphologies. This perspective focuses on recent developments of solution-processed perovskite heterojunctions for solar cells and novel optoelectronic devices, in particular, highlighting the demonstrated and potential advantages of nanocrystal-enabled fabrication strategies. A central tenet of this perspective is that the synthesis and dispersion of perovskite nanocrystals in non-polar organic solvents offers a key processing advantage over traditional perovskite precursor solutions in polar solvents since the former allows for layer-by-layer deposition without dissolving an underlying perovskite film or crystal. This processing advantage, coupled with nanocrystal size control and ligand chemistry, enables perovskite heterojunctions with highly tunable optical and electrical properties. Such heterojunctions may enable disruptive technological advances in broad classes of devices such as solar cells, photodetectors, sensors, and (in)coherent photon sources with tunable polarization.

Cite

CITATION STYLE

APA

Wieliczka, B. M., Habisreutinger, S. N., Schutt, K., Blackburn, J. L., & Luther, J. M. (2023). Nanocrystal-Enabled Perovskite Heterojunctions in Photovoltaic Applications and Beyond. Advanced Energy Materials, 13(22). https://doi.org/10.1002/aenm.202204351

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free