Investigation of the white light emission from Er/Nd/Yb rare earth oxides at vacuum and atmospheric pressure

1Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present the production of white light emission with the monochromatic infrared light excitation of erbium oxide (Er2O3), ytterbium oxide (Yb2O3), and neodymium oxide (Nd2O3) nano-crystalline powders at atmospheric (1 Atm) and vacuum (0.03 mbar) pressures. We synthesized the rare-earth oxide nano-crystalline powders by thermal decomposition technique. The crystal structure and morphological properties were determined by X-Ray Diffraction (XRD) and high-resolution transmission electron microscope (HRTEM). The optical region emission spectra of rare earth oxide powders measured in the 400–900 nm wavelength region at 1 atm and 0.03 mbar pressure. Luminescence spectra upon 808 nm, and/or 975 nm diode laser excitation were carried out at room temperature. The white light (WL) emission properties, color quality parameters were investigated at atmospheric and vacuum pressures. Synthesis Procedure We synthesized the rare-earth oxide nano-crystalline powders by thermal decomposition technique. For synthesis, rare-earth nitrate salts were used as precursors. Alginic acid sodium salt was used for gelation [1]. Details on the preparation method were described in some previous works [2, 3]. Results and Discussion Structural and Morphological Properties X-ray diffraction (XRD) patterns were collected by Bruker AXS D8 diffractometer. According to JCPDS (Joint Committee for Powder Diffraction Data), the peak positions observed in the XRD pattern of Yb2O3, Nd2O3, and Er2O3 powders corresponded well with Card# 01-074-1981, Card# 01-070-2152, Card# 01-074-1983, respectively. The peak positions of Nd2O3 powder correspond well with Nd2O2(CO3) crystalline phase is originated from the combination of alginic acid and nitrate salt of neodymium during the synthesis process [3, 4]. The morphological properties were investigated by a Jeol 2100F model high resolution transmission electron microscope (HRTEM). The particle sizes are in good agreement with the results obtained from XRD measurements. Spectroscopic Measurements The optical region emission spectra upon 808 nm, and/or 975 nm diode laser excitation were carried out at room temperature. For vacuum pressure, the samples were mounted in a closed chamber pumped by a vacuum pump. Both at vacuum and atmospheric pressures, bright white light was observed under 808 nm laser excitation for Nd2O3, Er2O3 nano powder, and under 975 nm laser excitation for Yb2O3, Er2O3. We also observed some additional overlapping anti-Stokes type emissions at vacuum pressure. The white emission behavior of Nd2O3 at two different pressures are given as an example in Fig. 1.

Cite

CITATION STYLE

APA

Tabanli, S., Eryurek, G., & Di Bartolo, B. (2018). Investigation of the white light emission from Er/Nd/Yb rare earth oxides at vacuum and atmospheric pressure. In NATO Science for Peace and Security Series B: Physics and Biophysics (pp. 387–389). Springer Verlag. https://doi.org/10.1007/978-94-024-1544-5_28

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free