Coming online for scientific operations, the ARGOS facility is boosting the imaging and spectroscopic capabilities at the LBT. With six Rayleigh laser guide stars and the corresponding wavefront sensing, ARGOS corrects the ground layer distortions for both LBT 8.4 m telescopes with its adaptive secondary mirrors. Under most conditions this setup delivers a PSF size reduction by a factor ~2-3. With the two LUCI infrared imaging and MOS spectroscopy instruments receiving the corrected images, observations in the near infrared can be performed at high spatial and spectral resolution. We will briefly discuss the final ARGOS technical setup and the adaptive optics performances. With first scientific observations been conducted, we will show that imaging cases with GLAO are nicely boosting several science programs from cluster CMD, Milky Way embedded star formation and Cepheids, BHs in nearby galaxies to extragalactic deep fields. In the unique combination of ARGOS with the multi-object NIR spectroscopy available in LUCI, first scientific observations have been performed on local and high-z objects. Those high spatial and spectral resolution observations nicely demonstrate the capabilities now at hand with ARGOS at the LBT. Inhere we describe briefly the system and show examples of science observations from nearby clusters to high redshift gravitationally lensed objects.
CITATION STYLE
Rabien, S., Bonaglia, M., Borelli, J. L., Buschkamp, P., Busoni, L., Cardwel, A., … Ziegleder, J. (2017). Performance and first science observations with ARGOS. In Adaptive Optics for Extremely Large Telescopes, 2017 AO4ELT5 (Vol. 2017-June). Instituto de Astrofisica de Canarias. https://doi.org/10.26698/ao4elt5.0072
Mendeley helps you to discover research relevant for your work.