This study investigated the multispectral remote sensing techniques including ASTER, Landsat 8 OLI, and Sentinel 2A data in order to distinguish different lithological units in the Alagbayan area of Dornogobi province, Mongolia. Therefore, Principal component analysis (PCA), Band ratio (BR), and Support Vector Machine (SVM), which are widely used image enhancement methods, have been applied to the satellite images for lithological mapping. The result of supervised classification shows that Landsat data gives a better classification with an overall accuracy of 93.43% and a kappa coefficient of 0.92 when the former geologic map and thin section analysis were chosen as a reference for training samples. Moreover, band ratios of ((band 7 + band 9)/band 8) obtained from ASTER corresponds well with carbonate rocks. According to PCs, PC4, PC3 and PC2 in the RGB of Landsat, PC3, PC2, PC6 for ASTER data are chosen as a good indicator for different lithological units where Silurian, Carboniferous, Jurassic, and Cretaceous formations are easily distinguished. In terms of Landsat images, the most efficient BR was a ratio where BRs of 5/4 for alluvium, 4/7 for schist and 7/6 to discriminate granite. In addition, as a result of BR as well as PCA, Precambrian Khutag-Uul metamorphic complex and Norovzeeg formation can be identified but granite-gneiss and schist have not given satisfactory results.
CITATION STYLE
Munkhsuren, B., Enkhdalai, B., Narantsetseg, T., Udaanjargal, K., Orolmaa, D., & Munkhjin, D. (2021). Lithological mapping using remote sensing techniques: A case study of Alagbayan area, Dornogobi province, Mongolia. Mongolian Geoscientist, 26(53), 37–54. https://doi.org/10.5564/mgs.v26i53.1790
Mendeley helps you to discover research relevant for your work.