Animals should time activities, such as foraging, migration and reproduction, as well as seasonal physiological adaptation, in a way that maximizes fitness. The fitness outcome of such activities depends largely on their interspecific interactions; the temporal overlap with other species determines when they should be active in order to maximize their encounters with food and to minimize their encounters with predators, competitors and parasites. To cope with the constantly changing, but predictable structure of the environment, organisms have evolved internal biological clocks, which are synchronized mainly by light, the most predictable and reliable environmental cue (but which can be masked by other variables), which enable them to anticipate and prepare for predicted changes in the timing of the species they interact with, on top of responding to them directly. Here, we review examples where the internal timing system is used to predict interspecific interactions, and howthese interactions affect the internal timing system and activity patterns. We then ask how plastic these mechanisms are, how this plasticity differs between and within species and how this variability in plasticity affects interspecific interactions in a changing world, in which light, the major synchronizer of the biological clock, is no longer a reliable cue owing to the rapidly changing climate, the use of artificial light and urbanization.
CITATION STYLE
Kronfeld-Schor, N., Visser, M. E., Salis, L., & van Gils, J. A. (2017, November 19). Chronobiology of interspecific interactions in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society Publishing. https://doi.org/10.1098/rstb.2016.0248
Mendeley helps you to discover research relevant for your work.