We have shown that PLG nanoparticles loaded with peptide antigen can reduce disease in animal models of autoimmunity and in a phase 1/2a clinical trial in celiac patients. Clarifying the mechanisms by which antigen-loaded nanoparticles establish tolerance is key to further adapting them to clinical use. The mechanisms underlying tolerance induction include the expansion of antigen-specific CD4+ regulatory T cells and sequestration of autoreactive cells in the spleen. In this study, we employed nanoparticles loaded with two model peptides, GP33–41 (a CD8 T cell epitope derived from lymphocytic choriomeningitis virus) and OVA323–339 (a CD4 T cell epitope derived from ovalbumin), to modulate the CD8+ and CD4+ T cells from two transgenic mouse strains, P14 and DO11.10, respectively. Firstly, it was found that the injection of P14 mice with particles bearing the MHC I-restricted GP33–41 peptide resulted in the expansion of CD8+ T cells with a regulatory cell phenotype. This correlated with reduced CD4+ T cell viability in ex vivo co-cultures. Secondly, both nanoparticle types were able to sequester transgenic T cells in secondary lymphoid tissue. Flow cytometric analyses showed a reduction in the surface expression of chemokine receptors. Such an effect was more prominently observed in the CD4+ cells rather than the CD8+ cells.
CITATION STYLE
Neef, T., Ifergan, I., Beddow, S., Penaloza-Macmaster, P., Haskins, K., Shea, L. D., … Miller, S. D. (2021). Tolerance induced by antigen-loaded plg nanoparticles affects the phenotype and trafficking of transgenic cd4+ and cd8+ t cells. Cells, 10(12). https://doi.org/10.3390/cells10123445
Mendeley helps you to discover research relevant for your work.